Practical ML : Course Project

Marcos Gestal
Friday, May 19, 2015

Background

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount
of data about personal activity relatively inexpensively. These type of devices are part of the quantified
self movement - a group of enthusiasts who take measurements about themselves regularly to improve their
health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly
do is quantify how much of a particular activity they do, but they rarely quantify how well they do it. In
this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6
participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More
information is available from the website here: http://groupware.les.inf.puc-rio.br/har (see the section on the
Weight Lifting Exercise Dataset).

See: Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight
Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented
Human ’13) . Stuttgart, Germany: ACM SIGCHI, 2013. online

Goal

The goal of this project is to predict the manner in which users did the exercise. This is the classe variable
in the training set. The other variables should predict it. The present report describes how the model was
built, the cross validation validation, an explanation about the choices, and so on.

Finally, the prediction model is used to predict 20 different test cases

Data

The training data for this project are available here: https://d396qusza40orc.cloudfront.net/predmachlearn/
pml-training.csv

The test data are available here: https://d396quszad0orc.cloudfront.net/predmachlearn/pml-testing.csv

The data for this project come from this source: http://groupware.les.inf.puc-rio.br/har#weight_ lifting
exercises.

Load data and pre-process steps

trainData <- file.path(getwd(), "Data/pml-training.csv")
testData <- file.path(getwd(), "Data/pml-testing.csv")

originalTrain <- read.csv(trainData, na.strings=c("NA", "#DIV/0!"))
originalTest <- read.csv(testData, na.strings=c("NA", "#DIV/0!"))

The original train dataset has 19622 observations and the test dataset has 20 observations. Both datasets
have 160 features each one.

The dataset is filtered to remove variables with all values missing and to discard the irrelevant variables
(mainly the descriptive ones) from the train and test sets.

http://groupware.les.inf.puc-rio.br/har
http://groupware.les.inf.puc-rio.br/har#wle_paper_section
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv
https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv
http://groupware.les.inf.puc-rio.br/har#weight_lifting_exercises
http://groupware.les.inf.puc-rio.br/har#weight_lifting_exercises

Pre-processing of datasets: clean features (columns) with all wvalues of NAs in
the train dataset
notNullFeatures <- colSums(is.na(originalTrain))==

train <- originalTrain[, notNullFeatures]
test <- originalTest[, notNullFeatures]

irrelevantFeatures <- c("X", "user_name", "raw_timestamp_part_1", "raw_timestamp_part_2",
"cvtd_timestamp", "new_window", "num_window")

train <- train[, 'names(train) %in% irrelevantFeatures]
test <- test[, !'names(test) %in} irrelevantFeatures]

The final datasets used for the train and test phase have 53 features each one. Those features are the same
in both datasets.

Data overview

Data contains info about how the users perform the exercises. The classe variable is a factor with 5 levels
about the way one user perform one set of 10 repetitions of the unilateral dumbbell biceps curl. . Class A :
according to the specification . Class B : throwing the elbows to the front . Class C : lifting the dumbbell
only halfway . Class D : lowering the dumbbell only halfway . Class E : throwing the hips to the front

Figure 1 shows the distribution of the 5 different levels.
plot(train$classe,

main="Distribution of valid outputs for the train dataset",
xlab="classe variable", ylab="frequency")

Distribution of valid outputs for the train dataset

o
o _
o
Lo
3 o
S O
(O] o
5 ™M
(on
()]
=]
o
o _|
o
—
o_

A B C D E

classe variable

As the previous graphic shows, class A is a little more present in the dataset, but there is not any class either
over- or under- represented. As we noted previously, Class A corresponds to the specified execution of the
exercise, while the other 4 classes correspond to common mistakes.

Partitioning the training set

In order to allow cross-validation, We split the original data set, with the 60% of that samples used for
train phase and the 40% for the validation (using a random subsampling without replacement approach).

The seed for the random number generation was set at 12345, so in order to reproduce the results below, the
same value should be used in other studies.

set.seed(12345)
inTrain <- createDataPartition(train$classe, p = 0.6, list = FALSE)

train <- train[inTrain,]
validation <- train[-inTrain,]

Predictions Models

Several predictions models were tested: neural networks, regression trees and random forest. For each one,
the confusion matrix shows the main statistic measures to check their performance.

The performance of the models is checked using the cross validation set to check problems like overfitting.

The confusionMatrix methods provides the Accuracy in the cross validation dataset, so we can calculate the
expected out-of-sample error as l-accuracy to check the percentage of missclassified observations. We
will consider good models those that present an expected out-of-sample error below 1% (or 0.01)

Two approaches for each selection are used.

First, the function train from library caret is also used to compare the results. This function can be used to:
. evaluate, using resampling, the effect of model tuning parameters on performance . choose the “optimal”
model across these parameters . estimate model performance from a training set

1 Define sets of model parameter values to evaluate
2 for each parameter sef do

3 for each resampling tteration do

4 Hold—out specific samples

5 [Optional] Pre—process the data

& Fit the model on the remainder

7 Predict the hold—out samples

8 end

]

Caleulate the average performance across hold—out predictions

10 end

11 Determine the optimal parameter set

12 Fit the final model to all the training data using the optimal parameter set

Once the model and tuning parameter values have been defined, the type of resampling should be also be
specified (k-fold cross-validation (once or repeated), leave-one-out cross-validation and bootstrap). After
resampling, the process produces a profile of performance measures is available to guide the user as to
which tuning parameter values should be chosen. By default, the function automatically chooses the tuning
parameters associated with the best value.

After that, a specific library implementation of the method is used and tested. This function receives a fixed
set of parameters, so the performance related with computation time should be higher.

A 10-fold Cross Validation was used as trainControl parameter. Furthermore, libraries parallel and doParallel
were used to improve the time responses.

cluster <- makeCluster(detectCores() - 1)
registerDoParallel(cluster)

trControl <- trainControl(method="cv", number=10,
allowParallel = TRUE)
Artificial Neural Networks

First, ANNs are used as model.

modelANN_caret <- train(classe ~ . , data=train, method="nnet",
trControl = trControl, verbose = FALSE, trace=FALSE)

Check accuracy over the validation dataset

predictionsANN_caret <- predict(modelANN_caret, newdata = validation, type="raw"
confusionMatrix(predictionsANN_caret, validation$classe)

Confusion Matrix and Statistics

##

Reference

Prediction A B C D E

A 908 137 130 89 41

B 25 144 56 50 126

C 81 213 196 49 102

D 193 115 110 390 146

E 118 314 334 199 464

##

Overall Statistics

##

#it Accuracy : 0.4444

95% CI : (0.4302, 0.4587)

No Information Rate : 0.2801

P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 0.2996

Mcnemar's Test P-Value : < 2.2e-16

##

Statistics by Class:

##

Class: A Class: B Class: C Class: D Class: E
Sensitivity 0.6853 0.15601 0.23729 0.50193 0.5279
Specificity 0.8834 0.93249 0.88601 0.85732 0.7494
Pos Pred Value 0.6958 0.35910 0.30577 0.40881 0.3247
Neg Pred Value 0.8782 0.82005 0.84593 0.89751 0.8743
Prevalence 0.2801 0.19514 0.17463 0.16427 0.1858
Detection Rate 0.1920 0.03044 0.04144 0.08245 0.0981
Detection Prevalence 0.2759 0.08478 0.13552 0.20169 0.3021
Balanced Accuracy 0.7843 0.54425 0.56165 0.67963 0.6386

modelANN <- nnet(classe ~ . , data = train, size=17, maxit=2000,
abstol=1e-3, algorithm = "backprop",
preProc=c("center", "scale"), trace=FALSE, verbose = FALSE)

predictionsANN <- predict(modelANN, newdata = validation, type="class")
confusionMatrix(predictionsANN, validation$classe)

Confusion Matrix and Statistics

##

Reference

Prediction A B C D E

A 1140 104 90 82 69

B 32 484 50 26 180

C 58 125 537 199 209

D 90 79 93 391 105

#i# E 5 131 56 79 316

##

Overall Statistics

##

Accuracy : 0.6063

95% CI : (0.5923, 0.6203)

No Information Rate : 0.2801

P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 0.5012

Mcnemar's Test P-Value : < 2.2e-16

##

Statistics by Class:

##

Class: A Class: B Class: C Class: D Class: E
Sensitivity 0.8604 0.5244 0.6501 0.50322 0.35950
Specificity 0.8987 0.9243 0.8486 0.90716 0.92963
Pos Pred Value 0.7677 0.6269 0.4761 0.51583 0.53833
Neg Pred Value 0.9430 0.8891 0.9198 0.90282 0.86411
Prevalence 0.2801 0.1951 0.1746 0.16427 0.18584
Detection Rate 0.2410 0.1023 0.1135 0.08266 0.06681
Detection Prevalence 0.3140 0.1632 0.2385 0.16025 0.12410
Balanced Accuracy 0.8795 0.7244 0.7494 0.70519 0.64456

ANN model does not provide good results in the classification or at least as not good as we expected. More
tests should be done, but the neither nnet nor caret packages provides a good/easy tuning of the parameters
like number of hidden layers, number el Process Elements per layer, training algorithms. . .

The required computation time is the greatest of the three methods probed.
Regression Trees

The second model test is based on Regression Trees (CART Algorithm)
modelTree_caret <- train(classe ~ . , data=train, method="rpart2",

preProc=c("center", "scale"),
trControl = trControl)

Check accuracy over the validation dataset
predictionsTree_caret <- predict(modelTree_caret, newdata = validation, type='"raw"
confusionMatrix(predictionsTree_caret, validation$classe)

Confusion Matrix and Statistics

##

Reference

Prediction A B C D E

A 792 61 1 27 9

B 198 573 134 70 152

#it C 221 193 551 115 128

D 108 93 140 565 94

E 6 3 0 0 496

##

Overall Statistics

#it

#i# Accuracy : 0.6294

95% CI : (0.6154, 0.6432)

No Information Rate : 0.2801

P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 0.5377

Mcnemar's Test P-Value : < 2.2e-16

##

Statistics by Class:

##

#i Class: A Class: B Class: C Class: D Class: E
Sensitivity 0.5977 0.6208 0.6671 0.7272 0.5643
Specificity 0.9712 0.8545 0.8317 0.8900 0.9977
Pos Pred Value 0.8899 0.5084 0.4561 0.5650 0.9822
Neg Pred Value 0.8612 0.9029 0.9219 0.9432 0.9093
Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Rate 0.1674 0.1211 0.1165 0.1195 0.1049
Detection Prevalence 0.1882 0.2383 0.2554 0.2114 0.1068
Balanced Accuracy 0.7845 0.7376 0.7494 0.8086 0.7810
system.time (modelTree <- rpart (classe ~ ., data=train, method="class"))
user system elapsed

2.04 0.01 2.04

predictionsTree <- predict(modelTree, newdata = validation, type='"class")
confusionMatrix(predictionsTree, validation$classe)

Confusion Matrix and Statistics

##

Reference

Prediction A B C D E
A 1108 163 18 40 37
#it B 24 491 62 22 28
C 67 177 739 190 138

##

D 103 82 7 514 38

E 23 10 0 11 638
##
Overall Statistics
##
Accuracy : 0.7378
95% CI : (0.7251, 0.7503)
#it No Information Rate : 0.2801
#it P-Value [Acc > NIR] : < 2.2e-16
##
Kappa : 0.6691
Mcnemar's Test P-Value : < 2.2e-16
##
Statistics by Class:
##
Class: A Class: B Class: C Class: D Class: E
Sensitivity 0.8362 0.5320 0.8947 0.6615 0.7258
Specificity 0.9242 0.9643 0.8535 0.9418 0.9886
Pos Pred Value 0.8111 0.7831 0.5637 0.6909 0.9355
Neg Pred Value 0.9355 0.8947 0.9746 0.9340 0.9405
Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Rate 0.2342 0.1038 0.1562 0.1087 0.1349
Detection Prevalence 0.2888 0.1326 0.2772 0.1573 0.1442
Balanced Accuracy 0.8802 0.7481 0.8741 0.8017 0.8572
rpart.plot(modelTree, main="Classification Tree for pml data")

Classification Tree for pml data

roll_belt < 130
pitch_forearm < -34
&
yaw_belt >= 170
/é o
magnet_dumbbell_z < -94
total_accel_dumbb < 8.5 pitch_belt < -43
g accel_fo}arm_x >=-100
\
roll_belt >= -0. 56 roll dumbbell <-62
_— [j//
magnet_dumbbell_x >= -450 accel |_forearm_z >= 44 accel dumbbell | x>=38
T G
accel_dumbbell_y < 38 yaw_arm < 120 (B) magnet_dumbbell_y >= 292
//// \\\\ ‘f// Cf// \\
magnet_belt_z < -380 magnet_belt _y >= 592 magnet_ dumbbell | z<-16 accel_arm_x >= 192
g % pitch_ dumbbell >= 66 roII belt >= 128 magne}mbbeufz <260

In this case, the specific library provides better results than caret CART implementation.

Random Forest

Finally, we test a randomForest approach using a specific library (randomForest) and the generic caret library
that performs a more exhaustive (and slow) search with k-fold cross validation.

modelRF_caret <- train(classe ~ . , data=train, method='"rf",
preProcess = c("center", "scale"),
trControl = trainControl(method = "cv"))

Check accuracy over the validation dataset
predictionsRF_caret <- predict(modelRF_caret, newdata = validation, type="raw"
confusionMatrix(predictionsRF_caret, validation$classe)

Confusion Matrix and Statistics

##

Reference

Prediction A B C D E

#it A 1325 0 0 0 0

B 0 923 0 0 0

C 0 0 826 0 0

D 0 0 o 777 0

E 0 0 0 0 879

##

Overall Statistics

##

Accuracy : 1

95% CI : (0.9992, 1)

No Information Rate : 0.2801

#it P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 1

Mcnemar's Test P-Value : NA

##

Statistics by Class:

##

Class: A Class: B Class: C Class: D Class: E
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Rate 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000
modelRF <- randomForest(classe ~ ., data=train, method="class")

predictionsRF <- predict(modelRF, newdata = validation, type='"class")
confusionMatrix(predictionsRF, validation$classe)

Confusion Matrix and Statistics
##
Reference

Prediction A B C D E

A 1325 0 0 0 0

B 0 923 0 0 0

C 0 0 826 0 0

D 0 0 o 777 0

E 0 0 0 0 879

#i#

Overall Statistics

##

Accuracy : 1

95% CI : (0.9992, 1)

No Information Rate : 0.2801

#it P-Value [Acc > NIR] : < 2.2e-16

##

Kappa : 1

Mcnemar's Test P-Value : NA

##

Statistics by Class:

##

Class: A Class: B Class: C Class: D Class: E
Sensitivity 1.0000 1.0000 1.0000 1.0000 1.0000
Specificity 1.0000 1.0000 1.0000 1.0000 1.0000
Pos Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
Neg Pred Value 1.0000 1.0000 1.0000 1.0000 1.0000
Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Rate 0.2801 0.1951 0.1746 0.1643 0.1858
Detection Prevalence 0.2801 0.1951 0.1746 0.1643 0.1858
Balanced Accuracy 1.0000 1.0000 1.0000 1.0000 1.0000

In both cases, we obtain an accuracy of 100% (out-of-sample error = 0%)

Conclussions

Once the tests were performed several conclussions can be drawn

1. From the tested methods, randomForest achieves the best results (Expected out-of sample: 0%)

2. The caret package provides an easy an common interface to test different classification/regression
methods instead of using specific libraries (although the last ones provides detailed graphs and functions
but specific to a subset of its implemented methods)

Submission

The code to generate the files with the predictions is the next (Predictions are genereted from the Random
Forest method):

predictionsFinal <- predict(modelRF, newdata = test, type='"class")
predictionsFinal

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
B A B A A E D B A A B C B A E E A B B B
Levels: ABCDE

Create individual files for the submissions of the predictions

pnl_write_files = function(x){
n = length(x)
for(i in 1:n){
filename = pasteO("problem_id_",i,".txt")
write.table(x[i] ,file=filename,quote=FALSE,row.names=FALSE,col.names=FALSE)
¥
}

pnl_write_files(predictionsFinal)

10

	Background
	Goal
	Data
	Load data and pre-process steps
	Data overview
	Partitioning the training set

	Predictions Models
	Artificial Neural Networks
	Regression Trees
	Random Forest

	Conclussions
	Submission

